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CANONICAL FORM OF AN ELASTOPLASTIC MODEL
- OF NUCLEAR FUSION

I.N.Mikhailovl, T.I.Mikhailovaz, G. Do Dang3

Starting from equations of motion describing the fusion process in symmetrical nuclear
systems of low angular momenta we reconstruct the collective Lagrangian and dissipation
Rayleigh functions. This opens new perspectives in studying the dynamical effects in the heavy
nuclei collisions. In particular, it provides a basis for a quantal description of the fusion process
and accompanying it effects.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics
and Laboratory of Nuclear Problems, JINR.
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Ilns ypasHeHH# JBHXKEHHS, OMHCHIBAIOIUMX TPOLECC CIHMAHMS B CHMMETPHYHON SAEPHOM
CHCTEME TIDH HH3KHX YITIOBBIX MOMEHTAaX, BOCCTAHARIMBACTCS KOJUIEKTHBHBIR JIarpaHXHaH H
auccunatieHas QyHKUHS Pases. DTO OTKDHIBAET HOBble BOIMOXHOCTH B M3YYECHHH IMHAMH-
YECKHX 3IPEKTOB B CTONKHOBEHHAX TAKENBIX MOHOB, a TAKXE AaeT OCHOBY IS KBaHTOBOTO
OMUCaHUs MpoLeCca CIUSHHUA H CONPOBOXIAIOLIUX ero adheKToB.

PaGora srimonuena 8 JlaGoparopuu teopetuueckoit dusiky uM.H.H.Boronw6osa u JlaGo-
paTropuH anepHbIx rpobrem OHUSH.

1. Introduction

In Refs. 1, 2, 3 we had shown how to bring to the canonical form the equations of
motion of a simple elastoplastic system resembling the one used to describe the fusion of
identical nuclei after the central collision [4]. Giving a canonical form to the equations of
motion has brought to evidence quite unexpected features of the fusion process related with
thermal fluctuations. However, the description of new phenomena presented in Refs. 1, 3
has a qualitative character due to the simplifications introduced into the equations of
motion. To arrive at the quantitative analysis of these phenomena and to go further in the
description of fusion one must learn how to formulate in a canonical way the more
complicated equations of Ref. 4. This is precisely the subject of this paper.
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2. An Elastoplastic Model of Fusion

Consider a system described by the equations [4]

1 . .
2 0= X(©Q) (@ + Wy (@ - TI =0, m

1+ QF(Q) =1 . e

Here Q is the macroscopic variable associated with the shape of the system (the mass-
quadrupole moment), while I1 is another macroscopic variable describing the distribution of
fermions in the momentum space (momentum-quadrupole moment). The right-hand side of
Eq.(2) describes the effects of collective energy dissipation. We assume the following ex-
pression for I :

Iy==7 M+mQ), ©)

Ie

where the first term is issuing from the mean-relaxation-time approximation for the col-
lision integral in the Kinetic equation from which Eq.(2) is obtained. As in Ref. 4 we
introduce a correction term in 1y which is ®(Q). The definition of the nt(Q) function will be

given later-on.

Equations (1), (2) are obtained in Ref. 4 on the basis of virial theorems introduced by
Chandrasekhar for studies of classical liquid bodies [5] and generalized in [6] for Fermi-
systems. Virial theorems represent some weighted integrals over the phase space of one
fermion of the many-body equations of motion for the density matrix. One arrives at the
former equations making a number of approximations in virial theorems*. Being apparently
quite sound in determining the mean characteristics of fusing systems, the approximations
lead, however, to serious shortcomings of the theory as it was formulated before.

Staying within the model of Ref. 4 one looses the control on the partition of the energy
between different channels. In particular, one has uncertainties in the determination of the
part of the energy transmitted to the statistical excitation of intrinsic degrees of freedom.
Here we establish a precise expression for the collective energy. We obtain the Hamiltonian
function starting from the «macroscopic» equations of motion and establish an exact corres-
pondence between the equations of motion and the energy conservation law.

Another drawback of the theory formulated in Ref. 4 is related with the fact that it is
limited to the classical mean values of the quantities involved in the description of the
fusion process. Neither thermal no quantum deviations from the trajectory are described in
this way. The way to treat thermal fluctuations in elastoplastic systems is shown in Refs. 1,
2, 3 using a schematic version of the model in Ref. 4. The quantal approach to the dissipa-
tive phenomena is presented in a number of textbooks (see, e.g., Ref. 7) and is further
developed in numerous recent publications (see Ref. 8). Here we extend the ideas presented
in the quoted papers for more realistic equations of motion (1), (2) preparing ourselves for
the quantitative analysis of effects of fluctuations (thermal and quantal) of macroscopic
observables in heavy nuclei collisions.

*In fact, Eq.(2) in Ref. 4 has slightly different form. Some more careful treatment, than made before, of the
corresponding virial theorem leads to the form of this equation given in the present paper.
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3. Canonical Form of Equations of Motion

We look for an expression for the collective energy corresponding to the equations of
motion (1), (2). When the dissipation is absent the collective energy is conserved, and we
start with a search for integrals of motion corresponding to Egs.(1), (2)'in the limit when
T > oo,

Consider an auxiliary Lagrange function of the following form:

=M o2y @
with
am@) _ 4u©Q) _
a0 - 4x(Q) M(Q), a0 2W, (@) M(Q) )
and the associated energy function
E'=Qa—17'—L'=M2QlQ2+U(Q). (6)
0Q

In fact, equations (5) have a two-parametric family of solutions: the integration constants
remain undefined at this stage. One of them contributes a constant term to the part of the
energy given by Eq.(6) and is not important. However, the «mass parameter» M(Q) is
determined by (5) only up to a scaling factor (M ). We shall discuss its choice later.

It is easy to check the following relation
dE’

T =M© Q- 2x(Q) 07 +2W, (Q)). ™
Using Eq.(1) one finds
dE’ :
= 2M(Q) QI ®
Now, we introduce a new function
g
wQ) =2 [ M@" do’ ©)
0

and write the r.h.s. of Eq.(7) in the following form
. d .
2MQ) o1 = ()T - W) =

d .
= WD + Q) F(Q) 0. (10

In writing the last equation the limiting form of Eq.(2) at T — o is used.
Introducing one more function

Q
UL@ =- [ do @) F @) (1
0

we arrive at the following equation
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£1=0, (12)
where

M .
1, =42 024 v + U@ -wom. (13)
In the limit © — oo Eq.(2) represents another integral of motion:
1%
=T+ W@ =T+]do'F " (14)
0

The energy must be a function depending on these two invariants. The IT variable is
associated with the intrinsic kinetic energy tensor of the fermionic system. Having in mind
that the dynamical equations in their present form are linear in IT variable and that the
kinetic energy must be a positive definite function, we write the following expression for
the collective energy:

12, sy

where C is a constant.
Now, as in Ref. 1 we consider IT as a quantity associated with the generalized velocity
corresponding to a cyclic variable Z. We write:

() = Z(1) + AQ). (16)

Then the quantity in Eq.(15) takes the form
=202, L2,y 0+e02 an

tot

where

U@ = U@ + U@ - Q) Q) + 5 () + W@

8(Q) = CIAQ) + W ()] - Q). (18)
Let us choose f{Q) in such a way that £(Q) becomes zero:
f0) = 5% - w (0. (19)

Expression in Eq.(17) is the collective energy of the system. To find the collective Hamil-
tonian one must introduce into this expression the momenta conjugated to the collective
variables Q and Z. The momenta are defined by the Lagrangian function, and we turn
ourselves to the definition of the latter. We write:

10 0.2 =2 o2 £ 72y 0+ 2170 20)

tot



Mikhailov LN. et al. Canonical Form 35

Here L”(Q) is a function which must be chosen from the condition that the Lagrange
equations
d oL dL _
dt aQi aQi '
were equivalent to the equations of motion (1) and (2) (here Ql. stands for Q and for Z

variables: Q, =0, 0, =0, 0, =7, Q,=2).
Using Eqs.(16) and (19) in the Lagrange equation

0

doL _d . ' _
it o= L+ Q)=
= 2 CM+ W)~ W) + L(@) =0 a1

and comparing Eq.(21) with Eq.(2), one immediately finds:
L(Q) = WQ). (22)

Inserting into Eqs.(18) and (20) the relations (19), (22) and using the earlier introduced
definitions one obtains the following expression for the Lagrangian function:

10.02="202+£22y (0)+ 2w (23)
with 0 i
U= U@ +2 [ do (@) W, (01 - HL". 24)
0

The energy conservation is inherent in the Lagrange formalism. On the other hand, it
establishes a relation between the generalized velocities and coordinates. The energy de-
fined by Eq.(17) which is the sum of invariants of the motion is conserved in the absence
of dissipation. We have found a Lagrangian associated with this energy function leading to
the correct form of one of the two equations of motion (of Eq.(2)). This implies that the
Lagrange equation in the Q coordinate yields the correct form of Eq.(1) also. The direct
calculation confirms this statement.

The term proportional to 1/t in the r.h.s. of Eq.(1) describes the dissipative pheno-
mena. An appropriate form of canonical equations of motion in the presence of dissipation
‘involves the Rayleigh dissipation function X(Q, ¢) which appears in the Lagrange-Rayleigh
equations [9]:

dol_aL__ax
dt aQi 00, aQi )
The definition of the Rayleigh function does not present any difficulty now. It is:

_C 2
= o (+mQ)”. (25)

To end the derivation of the Lagrangian function we must fix the two scaling parameters
M, and C. It is possible to do it for the first quantity if the collective mass function is
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known at a certain point. Thus, we fix the scaling factor in the mass function M(Q) equating
it with a given value M, at Q = 0 (see Ref. 4). From Eqgs.(17) and (24) one sees that the

scaling factor C for the [1-dependent part of the energy affects the potential term U,  giving

the Q dependence of the collective energy. In particular, at small Q values one has:

Ffs
Assuming that U(Q) contains the totality of the potential energy in vicinity of Q = 0, we
write:

. 2M,
U, = U@ +M,Q [c——o]. (26)

C=—>, 2n

whereF —F(Q 0) andM =M(Q =0).

Flnally, one arrives at the following expressions for the Lagrange, energy and Rayleigh
functions:

M,

10 0.2=Y2p% vy @+ 527+ 2, 28)
Js

M, . M
E=-20%+— 2%+ U,, (29)

F?

5

M Fo w(Q) 2
X . Fu }
Z(Q,Z)=T°[{Z+—f2—g——wﬁ@) +%ZK(Q)}- (30)
0

Note, that with the definition of scaling factors made before, the expressions for the colléc-
tive energy and the other functions become identical with that in Ref. 1 in vicinity of
Q=0

Establishing the form of the collective energy we solve the problem of the heating
during the fusion. Indeed, the energy conservation implies that the noncollective (statistical)
part of the energy grows with the rate

stat coll
_ZBQ T (31)
where
. 2M
Py=MQ) 0, P,=—7 (I1+ W, Q).
Ff:

The right-hand side of Eq.(31) is easily calculated giving

dE,,, [ FQ

stat _ 1 _& _ _
a = 1| 2m, Pz~ HO) RO+ Q) [Py~ WO, (32)
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If we fix the function n(Q) as

Q) = - f(Q), (33)
the expression in Eq.(32) becomes: ‘
dE F?
stat - f5 _ 2
“a =7, CzHO) (34)

“ sothatdE_ /dt is a nonnegative function of time. Using the relation between the excitation

energy and the temperature*, one establishes the time dependence of the latter.

From this point one may start the study of fluctuations in a complete analogy with
Refs. 1, 2, 3. When fluctuations in Q are sufficiently small compared to the region of Q,
where variations of functions entering L are important, one may use the formalism deve-
loped in Refs. 2, 3 in a straightforward way. Let Q(f) be the value of Q co-ordinate on the
mean trajectory at a time ¢. To study fluctuations one may introduce the simplified expres-
sion for the Lagrangian linearizing L(Q, Q, Z) in Eq.(28) in variations of M(Q) and
FedQ) functions. Then one obtains:

appr = —Aﬂ%zn (SQ)Z B
du,_(Q) 1(4°U© )
Ui (Q() + g 80+ | —5— 607 |+
=00 Q Q=01
F? Z . d .
+Lr— 1 z| wow +[ £ ] s0]. (35)
4M0 daQ
120
Passing to new variables
U . 2MPBO 5,
30 - M = . Z-—
Q - M(Q(1) [ 30 ]Q= 00 Ff? ( a0 }Qz 00)

one comes back to the Lagrange function of the schematic model of Ref. 3 plus constant
terms which play no role in the Lagrangian function and may be neglected. Thus, the
formalism developed in Ref. 2 is applicable for the study of fluctuations in a sufficiently
large class of systems in which the fluctuations amplitude in Q variable remains always
sufficiently small in the scale of variations of the functions M(Q) and F £s(D).

This accomplishes the formal definition of the elements in the Lagrange-Rayleigh for-

mulation of the fusion dynamics and opens the way to study the thermal fluctuations during
the fusion.

*At the moderate excitation energy the temperature is related with the excitation energy according to equation {10}

Es!a! =aT 2.
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4. Concluding Remarks

The formal study presented before is necessary to come to quantitative analysis of
fluctuations in the fusion process within the model developed in Ref. 4. We note that the
existing models do not cope yet with the problem in a satisfactory way. For example, in an
important paper on the subject by Frébrich [11] the necessity of introduction of an arbitrary
«cut off» parameter is shown to bring the theory in agreement with experimental data. The
cut off parameter is introduced to dismiss the fluctuation effects from the «late» stages of
the fusion process appearing in the models with more conventional treatment of dissipa-
tion—fluctuation relations. Note, that the qualitative study made in Refs. 2, 3 of effects of
fluctuations within the schematic model of Ref. 1 allows one to think that there is no need
of such a parameter in the advocated here model of fusion.

In fact, this formalism seems to open many new possibilities of studying the nuclear
fusion. We mention two of them: 1) There is no difficulty now to come to the Hamilton
formulation of the model which is necessary to study quantal effects; 2) The study makes
transparent relations between the model of Ref. 4 and a number of other models of fusion.
This, in turn, makes possible to combine positive elements of different approaches to the
problem.
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